
Running the CDISC Open Rules Engine (CORE) in BASE SAS©

Presented by Lex Jansen, Senior Director, Data Science Development, CDISC

Meet the Speaker

Lex Jansen

Title: Senior Director, Data Science Development

Organization: CDISC

Lex Jansen is an independent consultant, currently working as Senior

Director, Data Science Development at CDISC. Lex co-leads the CDISC

Data Exchange Standards team, and contributes to the CDISC Library

and the CDISC Biomedical Concepts project.

Before joining CDISC, he was a Principal Solution Consultant and

Principal Software Developer at SAS Institute.

Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the author(s)
and do not necessarily reflect the official policy or position of CDISC.

• CDISC is a vendor-neutral and technology-inclusive organization focused on
promoting the use of standards to improve the quality and efficiency of research

• CDISC does not endorse any specific vendor or technology in the use of its
standards.

• The author has no conflicts to disclose

32024 US CDISC+TMF Interchange | #ClearDataClearImpact

Agenda

1. Introduction - CORE Concept

2. CORE Conformance Rules

3. The CORE Engine

4. Implementing the CORE engine in SAS

5. Running the CORE engine in SAS

Introduction

The CORE Concept

What are CDISC Open Rules?

62024 US CDISC+TMF Interchange | #ClearDataClearImpact

Engine

Governance

Rules

• Rules: Complete set of aligned, open
and unambiguous machine-readable
conformance rules for each standard
including CDISC, Regulatory, and
Industry needs

• Governance: Well-defined governance
model for the evaluation, development,
and publication of rules from all
stakeholders

• Engine: Open-source rules engine
available for testing and community use

CORE Conformance Rules

CORE Conformance Rules

• A human-readable Rule specification
is interpreted by the Rule developer
and authored in the CORE Rule Editor
using a structured language (YAML).

• Rule Editor:
• Web-based application

• Structured document (YAML), 1 CORE rule
per file containing rule’s metadata and check
logic

• Real-time syntax checking

82024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine

The CORE Engine

• Open-source software application whose purpose is to execute the Rules
against clinical data and return results.

• The CORE Engine is made available to the CDISC Community in GitHub
(https://github.com/cdisc-org/cdisc-rules-engine)

• The Engine is written in the Python programming language and comes with
a permissive MIT open-source license

• Can be deployed in a variety of processing environments

• The Engine accesses the Rules from the CDISC Library via a Library API
when it executes

• Users may also add custom Rules for processing

102024 US CDISC+TMF Interchange | #ClearDataClearImpact

https://github.com/cdisc-org/cdisc-rules-engine

The CORE Engine

There are several ways to run the CORE Engine

• As a CLI (Command Line Interface)
• compiled packages available for Windows, Mac, Linux-Ubuntu

• Download - Unzip - Run

• .\core.exe validate -s <standard> -v <standard_version> -d <datasetpath>
.\core.exe validate -s sdtmig -v 3-4 -d .\data\

• Run in Python
• Clone the repository and run python core.py from the root of the CORE project with

appropriate parameters.

• Import the rules engine library in Python (available as a package on PyPi) and
run rules against data directly (without needing your data to be in .xpt format) in
your own environment or tooling

112024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine - Running as a CLI

122024 US CDISC+TMF Interchange | #ClearDataClearImpact

https://github.com/cdisc-org/cdisc-rules-engine/releases

https://github.com/cdisc-org/cdisc-rules-engine/releases

The CORE Engine - Running as a CLI

132024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine - Running as a CLI - Commands

• list-ct - List the Controlled Terminology packages available in the cache

• list-dataset-metadata - Lists metadata of given datasets

• list-rule-sets - Lists rules sets available in the cache

• test - Test Rules using the CDISC Rules Engine

• update-cache - Update the local cache folder

• validate - Validate data using CDISC Rules Engine

• version - Show the version of the CDISC Rules Engine

142024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine - Running as a CLI - validate

152024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine - Running as a CLI - validate

162024 US CDISC+TMF Interchange | #ClearDataClearImpact

The CORE Engine - Running as a CLI - update-cache

172024 US CDISC+TMF Interchange | #ClearDataClearImpact

• The CORE Engine stores rules and standards metadata from the CDISC
Library in a local cache folder.

• Rules get added to the CDISC Library on a regular basis

• At any moment in time, the locally stored cache can be updated with the
update-cache command

The CORE Engine - Running as a CLI - update-cache

182024 US CDISC+TMF Interchange | #ClearDataClearImpact

Implementing the CORE Engine in SAS

Running the CORE Engine in SAS

SAS has various techniques to execute commands

• X statement

• SYSTASK statement

• %SYSEXEC statement

• CALL SYSTEM statement

• SYSTEM function

• FILENAMEC statement with the PIPE option

Relevant SAS options:

• XSYNC - Controls whether an X command or statement executes
synchronously or asynchronously

• XWAIT - Specifies whether you must type EXIT at the command prompt
before the shell closes

202024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS
%let project_folder = /_github/lexjansen/cdisc-core-sas;
%let core_exe = _Projects\CDISC_CORE\core_v081\core.exe;
%let core_log = %sysfunc(pathname(work))/core;
%let core_options =
 -ca &project_folder/resources/cache
 -dp &project_folder/testdata/sdtm
 -rt &project_folder/resources/templates/report-template.xlsx
 -s sdtmig -v 3-3
 -ct sdtmct-2023-12-15
 -dv 2.1
 -o &project_folder/develop/sdtmig-3-3-report
 --whodrug &project_folder/testdata/dictionaries/whodrug
 --meddra &project_folder/testdata/dictionaries/meddra
 -r CORE-000266 -r CORE-000356;

systask command "&core_exe validate &core_options" wait
 taskname=core_task_validate status=core_result_validate;
%put &=core_result_validate;

212024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS

It works:

46 systask command "&core_exe validate &core_options"

47 wait taskname=core_task_validate status=core_result_validate;

NOTE: Task "core_task_validate" produced no LOG/Output.

48 %put &=core_result_validate;

CORE_RESULT_VALIDATE=0

... or it does not work:

46 Systask command "&core_exe validate &core_options"

ERROR: Insufficient authorization to access SYSTASK COMMAND.

47 wait taskname=core_task_validate status=core_result_validate;

222024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS

• The assumption is that the SYSTASK command is valid in the current SAS
session.

• This may not be the case especially in shared SAS environments.

• In certain SAS environments SAS administrators do not allow command line
execution using Base/SAS

• Some users have found ways around this in their SAS environment:
• Write Java code that can execute the CORE commands.

This Java code can be compiled into an executable jar and wrapped into a SAS macro to
support CORE execution via SAS

• In some SAS environments R can be executed, and has not been locked down.
Write an R script that can execute the CORE commands

• Since CORE is written in Python, and SAS supports execution of Python
code, why not call the Python CORE functions directly in SAS?

232024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS

Solution:

• Implement the CDISC CORE CLI commands as Python functions extracted
from the CORE Python entry point (core.py)

• Pass parameters and code to the Python interpreter and return the results to
SAS

• These Python functions can be called and executed by user-defined SAS
functions that are defined in the SAS Function Compiler (PROC FCMP)

• These user-defined SAS functions can be called from the DATA step or any
context where SAS functions are available.

• Wrap the user-defined SAS functions in SAS macro to work around FCMP
limitations:

• define named parameters

• optional parameters

• default parameter values

242024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS - via Python

• Details of a Proof of Concept on GitHub
https://github.com/lexjansen/cdisc-core-sas

• SAS 9.4M6 (May 2019 update) or later

• Python installed -
The CDISC CORE engine requires Python 3.9 or Python 3.10

• Set the MAS_M2PATH and MAS_PYPATH environment variables
• MAS_M2PATH - absolute path to mas2py.py file in your SAS installation

• MAS_PYPATH - absolute path to the Python executable

• The CORE_PATH environment variable needs have the absolute path to a
clone of the cdisc-rules-engine GitHub repository

• The cdisc-core-sas repository (https://github.com/lexjansen/cdisc-core-sas)
comes bundled with the source code of the v0.8.1 release (September 24,
2024) of the CDISC CORE engine

252024 US CDISC+TMF Interchange | #ClearDataClearImpact

https://github.com/lexjansen/cdisc-core-sas
https://github.com/lexjansen/cdisc-core-sas

Running the CORE Engine in SAS - via Python

26

virtual Python environment

Source code from the v0.8.1

cdisc-rules-engine release

Requirements file with Python

packages to be installed

2024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS -
via Python

27

core.py is the interface to the CORE Engine commands

• Contains the definitions of the CORE commands

• Contains a Python function to be called for each

CORE command

• Defines the parameters for the commands, including
defaults and required/optional

2024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS -
via Python

28

From core.py create Python functions that can be called

and executed by user-defined SAS functions, which will

be called by SAS macros

Python

functions

PROC FCMP

user-defined

SAS functions
SAS macros

2024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS - FCMP Functions

292024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS - Macros

302024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS

Running the CORE Engine in SAS - Update local cache

322024 US CDISC+TMF Interchange | #ClearDataClearImpact

Update local cache with latest

CDISC Library rules

Update local cache with

local custom rules

Remove custom rules from

the local cache

Running the CORE Engine in SAS - Run Validation

332024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS - Get CORE Rules

342024 US CDISC+TMF Interchange | #ClearDataClearImpact

Get CORE rules

from local cache

Get custom CORE rules

from local cache

Running the CORE Engine in SAS - Get CORE Rules

352024 US CDISC+TMF Interchange | #ClearDataClearImpact

Running the CORE Engine in SAS - Run Validation

362024 US CDISC+TMF Interchange | #ClearDataClearImpact

ljansen@cdisc.org

lexjansen@gmail.com

https://www.linkedin.com/in/lexjansen

 GitHub repo: https://github.com/lexjansen/cdisc-core-sas

 Open issues: https://github.com/lexjansen/cdisc-core-sas/issues

Q

U

E

S

T

I

O

N

S

mailto:ljansen@cdisc.org
mailto:lexjansen@gmail.com
https://www.linkedin.com/in/lexjansen
https://github.com/lexjansen/cdisc-core-sas
https://github.com/lexjansen/cdisc-core-sas/issues

	Slide 1: Running the CDISC Open Rules Engine (CORE) in BASE SAS©
	Slide 2: Meet the Speaker
	Slide 3: Disclaimer and Disclosures
	Slide 4: Agenda
	Slide 5: Introduction
	Slide 6: What are CDISC Open Rules?
	Slide 7: CORE Conformance Rules
	Slide 8: CORE Conformance Rules
	Slide 9: The CORE Engine
	Slide 10: The CORE Engine
	Slide 11: The CORE Engine
	Slide 12: The CORE Engine - Running as a CLI
	Slide 13: The CORE Engine - Running as a CLI
	Slide 14: The CORE Engine - Running as a CLI - Commands
	Slide 15: The CORE Engine - Running as a CLI - validate
	Slide 16: The CORE Engine - Running as a CLI - validate
	Slide 17: The CORE Engine - Running as a CLI - update-cache
	Slide 18: The CORE Engine - Running as a CLI - update-cache
	Slide 19: Implementing the CORE Engine in SAS
	Slide 20: Running the CORE Engine in SAS
	Slide 21: Running the CORE Engine in SAS
	Slide 22: Running the CORE Engine in SAS
	Slide 23: Running the CORE Engine in SAS
	Slide 24: Running the CORE Engine in SAS
	Slide 25: Running the CORE Engine in SAS - via Python
	Slide 26: Running the CORE Engine in SAS - via Python
	Slide 27: Running the CORE Engine in SAS - via Python
	Slide 28: Running the CORE Engine in SAS - via Python
	Slide 29: Running the CORE Engine in SAS - FCMP Functions
	Slide 30: Running the CORE Engine in SAS - Macros
	Slide 31: Running the CORE Engine in SAS
	Slide 32: Running the CORE Engine in SAS - Update local cache
	Slide 33: Running the CORE Engine in SAS - Run Validation
	Slide 34: Running the CORE Engine in SAS - Get CORE Rules
	Slide 35: Running the CORE Engine in SAS - Get CORE Rules
	Slide 36: Running the CORE Engine in SAS - Run Validation
	Slide 37

