
Running the CDISC Open Rules Engine (CORE) in BASE SAS©

Presented by Lex Jansen, Senior Director, Data Science Development, CDISC



Meet the Speaker

Lex Jansen

Title: Senior Director, Data Science Development

Organization: CDISC

Lex Jansen is an independent consultant, currently working as Senior 

Director, Data Science Development at CDISC. Lex co-leads the CDISC 

Data Exchange Standards team, and contributes to the CDISC Library 

and the CDISC Biomedical Concepts project. 

Before joining CDISC, he was a Principal Solution Consultant and 

Principal Software Developer at SAS Institute.



Disclaimer and Disclosures

• The views and opinions expressed in this presentation are those of the author(s) 
and do not necessarily reflect the official policy or position of CDISC.
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promoting the use of standards to improve the quality and efficiency of research

• CDISC does not endorse any specific vendor or technology in the use of its 
standards.

• The author has no conflicts to disclose
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Introduction

The CORE Concept



What are CDISC Open Rules?
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Engine

Governance

Rules

• Rules: Complete set of aligned, open 
and unambiguous machine-readable 
conformance rules for each standard 
including CDISC, Regulatory, and 
Industry needs

• Governance: Well-defined governance 
model for the evaluation, development, 
and publication of rules from all 
stakeholders

• Engine: Open-source rules engine 
available for testing and community use



CORE Conformance Rules



CORE Conformance Rules

• A human-readable Rule specification 
is interpreted by the Rule developer 
and authored in the CORE Rule Editor 
using a structured language (YAML).

• Rule Editor:
• Web-based application

• Structured document (YAML), 1 CORE rule 
per file containing rule’s metadata and check 
logic

• Real-time syntax checking
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The CORE Engine



The CORE Engine

• Open-source software application whose purpose is to execute the Rules 
against clinical data and return results.

• The CORE Engine is made available to the CDISC Community in GitHub
(https://github.com/cdisc-org/cdisc-rules-engine)

• The Engine is written in the Python programming language and comes with 
a permissive MIT open-source license

• Can be deployed in a variety of processing environments

• The Engine accesses the Rules from the CDISC Library via a Library API 
when it executes

• Users may also add custom Rules for processing
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https://github.com/cdisc-org/cdisc-rules-engine


The CORE Engine

There are several ways to run the CORE Engine

• As a CLI (Command Line Interface) 
• compiled packages available for Windows, Mac, Linux-Ubuntu

• Download - Unzip - Run

• .\core.exe validate -s <standard> -v <standard_version> -d <datasetpath>
.\core.exe validate -s sdtmig -v 3-4 -d .\data\

• Run in Python
• Clone the repository and run python core.py from the root of the CORE project with 

appropriate parameters.

• Import the rules engine library in Python (available as a package on PyPi) and 
run rules against data directly (without needing your data to be in .xpt format) in 
your own environment or tooling 
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The CORE Engine - Running as a CLI
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https://github.com/cdisc-org/cdisc-rules-engine/releases

https://github.com/cdisc-org/cdisc-rules-engine/releases


The CORE Engine - Running as a CLI
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The CORE Engine - Running as a CLI - Commands

• list-ct - List the Controlled Terminology packages available in the cache

• list-dataset-metadata - Lists metadata of given datasets

• list-rule-sets - Lists rules sets available in the cache 

• test - Test Rules using the CDISC Rules Engine

• update-cache - Update the local cache folder

• validate - Validate data using CDISC Rules Engine

• version - Show the version of the CDISC Rules Engine
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The CORE Engine - Running as a CLI - validate

152024 US CDISC+TMF Interchange | #ClearDataClearImpact



The CORE Engine - Running as a CLI - validate

162024 US CDISC+TMF Interchange | #ClearDataClearImpact



The CORE Engine - Running as a CLI - update-cache
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• The CORE Engine stores rules and standards metadata from the CDISC 
Library in a local cache folder.

• Rules get added to the CDISC Library on a regular basis

• At any moment in time, the locally stored cache can be updated with the 
update-cache command



The CORE Engine - Running as a CLI - update-cache
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Implementing the CORE Engine in SAS



Running the CORE Engine in SAS

SAS has various techniques to execute commands

• X statement

• SYSTASK statement

• %SYSEXEC statement

• CALL SYSTEM statement

• SYSTEM function

• FILENAMEC statement with the PIPE option

Relevant SAS options:

• XSYNC - Controls whether an X command or statement executes 
synchronously or asynchronously

• XWAIT - Specifies whether you must type EXIT at the command prompt 
before the shell closes
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Running the CORE Engine in SAS
%let project_folder = /_github/lexjansen/cdisc-core-sas;
%let core_exe = \_Projects\CDISC_CORE\core_v081\core.exe;
%let core_log = %sysfunc(pathname(work))/core;
%let core_options = 
    -ca &project_folder/resources/cache
    -dp &project_folder/testdata/sdtm
    -rt &project_folder/resources/templates/report-template.xlsx
    -s sdtmig -v 3-3
    -ct sdtmct-2023-12-15
    -dv 2.1
    -o &project_folder/develop/sdtmig-3-3-report
    --whodrug &project_folder/testdata/dictionaries/whodrug
    --meddra &project_folder/testdata/dictionaries/meddra
    -r CORE-000266 -r CORE-000356;

systask command "&core_exe validate &core_options" wait
        taskname=core_task_validate status=core_result_validate;
%put &=core_result_validate;
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Running the CORE Engine in SAS

It works:

46   systask command "&core_exe validate &core_options"

47           wait taskname=core_task_validate status=core_result_validate;

NOTE: Task "core_task_validate" produced no LOG/Output.

48   %put &=core_result_validate;

CORE_RESULT_VALIDATE=0

...  or it does not work:

46   Systask command "&core_exe validate &core_options"

ERROR: Insufficient authorization to access SYSTASK COMMAND.

47 wait taskname=core_task_validate status=core_result_validate;
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Running the CORE Engine in SAS

• The assumption is that the SYSTASK command is valid in the current SAS 
session. 

• This may not be the case especially in shared SAS environments. 

• In certain SAS environments SAS administrators do not allow command line 
execution using Base/SAS

• Some users have found ways around this in their SAS environment:
• Write Java code that can execute the CORE commands. 

This Java code can be compiled into an executable jar and wrapped into a SAS macro to 
support CORE execution via SAS

• In some SAS environments R can be executed, and has not been locked down.
Write an R script that can execute the CORE commands 

• Since CORE is written in Python, and SAS supports execution of Python 
code, why not call the Python CORE functions directly in SAS?
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Running the CORE Engine in SAS

Solution:

• Implement the CDISC CORE CLI commands as Python functions extracted 
from the CORE Python entry point (core.py)

• Pass parameters and code to the Python interpreter and return the results to 
SAS

• These Python functions can be called and executed by user-defined SAS 
functions that are defined in the SAS Function Compiler (PROC FCMP)

• These user-defined SAS functions can be called from the DATA step or any 
context where SAS functions are available.

• Wrap the user-defined SAS functions in SAS macro to work around FCMP 
limitations:

• define named parameters

• optional parameters

• default parameter values
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Running the CORE Engine in SAS - via Python

• Details of a Proof of Concept on GitHub
https://github.com/lexjansen/cdisc-core-sas

• SAS 9.4M6 (May 2019 update) or later

• Python installed - 
The CDISC CORE engine requires Python 3.9 or Python 3.10 

• Set the MAS_M2PATH and MAS_PYPATH environment variables
• MAS_M2PATH - absolute path to mas2py.py file in your SAS installation

• MAS_PYPATH - absolute path to the Python executable

• The CORE_PATH environment variable needs have the absolute path to a 
clone of the cdisc-rules-engine GitHub repository

• The cdisc-core-sas repository (https://github.com/lexjansen/cdisc-core-sas) 
comes bundled with the source code of the v0.8.1 release (September 24, 
2024) of the CDISC CORE engine 
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https://github.com/lexjansen/cdisc-core-sas
https://github.com/lexjansen/cdisc-core-sas


Running the CORE Engine in SAS - via Python

26

virtual Python environment

Source code from the v0.8.1 

cdisc-rules-engine release 

Requirements file with Python 

packages to be installed
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Running the CORE Engine in SAS - 
via Python

27

core.py is the interface to the CORE Engine commands

• Contains the definitions of the CORE commands

• Contains a Python function to be called for each 

CORE command

• Defines the parameters for the commands, including 
defaults and required/optional
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Running the CORE Engine in SAS - 
via Python

28

From core.py create Python functions that can be called 

and executed by user-defined SAS functions, which will 

be called by SAS macros 

Python 

functions

PROC FCMP 

user-defined 

SAS functions
SAS macros
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Running the CORE Engine in SAS - FCMP Functions
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Running the CORE Engine in SAS - Macros
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Running the CORE Engine in SAS



Running the CORE Engine in SAS - Update local cache
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Update local cache with latest 

CDISC Library rules

Update local cache with 

local custom rules

Remove custom rules from 

the local cache



Running the CORE Engine in SAS - Run Validation

332024 US CDISC+TMF Interchange | #ClearDataClearImpact



Running the CORE Engine in SAS - Get CORE Rules
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Get CORE rules 

from local cache

Get custom CORE rules 

from local cache



Running the CORE Engine in SAS - Get CORE Rules
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Running the CORE Engine in SAS - Run Validation
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ljansen@cdisc.org

lexjansen@gmail.com

https://www.linkedin.com/in/lexjansen

  GitHub repo: https://github.com/lexjansen/cdisc-core-sas

  Open issues: https://github.com/lexjansen/cdisc-core-sas/issues
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