

Meet the Speaker

Christine Connolly

Title: Head of Standards Projects

Organization: CDISC

Christine Connolly is an advocate for standardization given its potential to expedite improved health outcomes. She has led initiatives, developed, and implemented data standards for almost fifteen years and has twentyfive years of experience working in global clinical trials in both academic and pharmaceutical settings.

Digital Health Technologies (DHTs): A Path to Data Standardization

Presented by Christine Connolly, Head of Standards Projects, CDISC

Agenda

- 1. Digital Health Technologies (DHTs)
- 2. Standards Through Partnership
- 3. A Path to Standardization

Digital Health Technologies (DHTs)

Digital Medicine

Digital Medicine Field

The use of technologies as tools for measurement and intervention in the service of human health $^{\rm 1}$

Digital Health Technologies (DHTs)

A system that uses computing platforms, connectivity, software, and/or sensors, for healthcare and related uses $^{\rm 2}$

Sensor-based DHTs

Digital health technologies that include sensor hardware Software applications that run on general-purpose computing platforms

¹ https://dimesociety.org/about-us/defining-digital-medicine/

² https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations

Advantages of DHTs Clinical Research

Data may better reflect the lived (real world) experience

Understanding of day-to-day variability

Improved recruitment, participant engagement, and retention

Decentralized trials with wider patient access

Continuous or frequent measurements increase statistical power

May reduce burden on participants, sites, and investigators

Reproducible, objective data to complement patient-reported outcomes

Today

Contexts in which DHTs support clinical research are innovative and evolving.

Although separate components exist, at present there are no connected, end-toend community resources, from evaluation of DHTs for data collection through subsequent representations of data.

> A volunteer team of diverse stakeholders is working to address opportunities for end-to-end resources and data standardization.

Standards Through Partnership

Standards Through Partnership

To advance the ethical, effective, equitable, and safe use of digital medicine to redefine healthcare and improve lives

Digital Health Measurement Collaborative Community

by Dir

A collaborative community hosted by DiMe with the FDA's Center for Devices and Radiological Health cdisc

Create connected standards across the study information lifecycle to enable accessible, interoperable, and reusable data for more meaningful and effective research

Volunteers

Partnership Goals

A **framework** for long-term, ongoing provision of connected, end-to-end community resources to support DHT data collection in clinical research via organizational partnership and volunteer engagement.

https://dimesociety.org/get-involved/library-of-digital-endpoints/

.	•	Endpoint Endpoint		Endpoint description (per trial	Health Technology			Trial primary			
L		identifier	Trial identifier	positioning	registration record)	concept/s	type	Trial phase	purpose	Condition/s	Condition/s category
					Mean Nighttime Total Sleep Time as					Chronic	
		87	NCT00325728	Primary	determined by actigraphy., Week 1	Sleep	Wearable	Phase 2	Treatment	Insomnia	Sleep/wake
					Over the Last 7 Days of Each Treatment	Physical				Peripheral	Endocrine or metabolic
_		99	NCT01474772	Secondary	Period (Week 6 of Each Treatment	activity	Wearable	Phase 3	Treatment	Neuropathy	conditions,Neurological

Glossary

Sensor-based digital health technologies (sDHT)

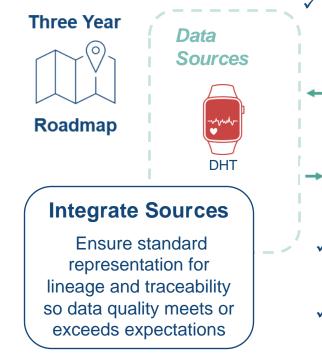
/ˈsɛnsər-beɪst ˈdɪʤətəl hɛlθ tɛk ˈnɑləʤiz/ **Connected** digital medicine products that process data captured by **mobile** sensors using **algorithms** to generate measures of behavioral and/or physiological function, also referred to as biometric monitoring technologies.

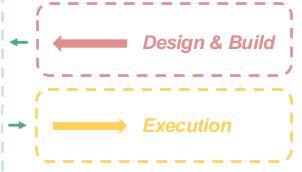
<u>V3+ Framework</u>

https://dimesociety.org/glossary/

V3+ Framework

https://datacc.dimesociety.org/v3/


Additional resources may also be considered.


A Path to Standardization

Digital Health Technologies Initiative

Define initial set of usable **Digital Health Technology** endpoints and concepts

- ✓ Define an exchange mechanism to represent lineage, traceability, and quality of the data for real world data
- ✓ Continuously deliver proof of concepts demonstrating integration use cases

Digital Health Technologies Initiative									
Plan	Pilot	Publish							
Deliver per initial scope	Industry pilot of resources	Evaluate lessons learned							
Strategy for release of community resources	Strategy for iterative publication	Refine and implement for steady-state							
Prepare pilot resources	Begin resource publication	ς.							
2024	2025	2026							
cdisc	CDISC 2024 China Interchange #ClearDataClearIm	ipact 14							

........

.........

Initial Scope and Deliverables

Key Concepts Layperson Person Professional Active Engagement Passive occurs or Date(s Environmental occurs in Settina Non-regulated Digital Health Technology Regulated (DHT)

Device Attributes & Digital Endpoints

DiMe Library of Digital Endpoints: 125 CGM

Example 1: Continous Glucose Monitoring

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM % Time 70-180 mg/dl," in a clinical trial. The device data needed for the trial is specified in the study protocol.

The following dataset is an example of data output by the CGM. The data in the columns "Insulin Value (u)" and "Carb Value (grams)" are for data input by the user; they are not used in this example.

> dexcom g7.xpt

Relevant glucose data from the device output file have been mapped to the following LB domain dataset.

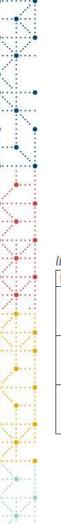
> lb.xpt

Best Practices

Key Concepts

DiMe Library of Digital Endpoints

Endpoint Trial Endpoint		Endpoint description (per		Technology	Trial	Trial primary	,	
identifier 포	identifier	positioning	trial registration record)	Health concept/s	type 🔻	phase 💌	purpose 🔻	Condition/s
			CGM % Time 70-180 mg/dl, %	, 5				
			time 70-180 mg/dl by CGM,					
			In flight period of time and	Blood/skin/other				Diabetes
125	NCT0366880	8 Secondary	for 72 hours at each	biomarkers	Wearable	Phase 4	Treatment	Mellitus Type 1
with		Non-regulated		Wearable Ambient		e.g	inimally processed) g., electrical signal	
tal Health Technolog (DHT)	ay may be	(e.g., fitness trac	may have Agency Class	Injestible		Sur	om raw data or proc g., activity count mmary Measure	
	has	Data Capture		or-based data may be		e.g		
						e.g.	, interpretation, clas	sibfication, event (Afib



Device Attributes

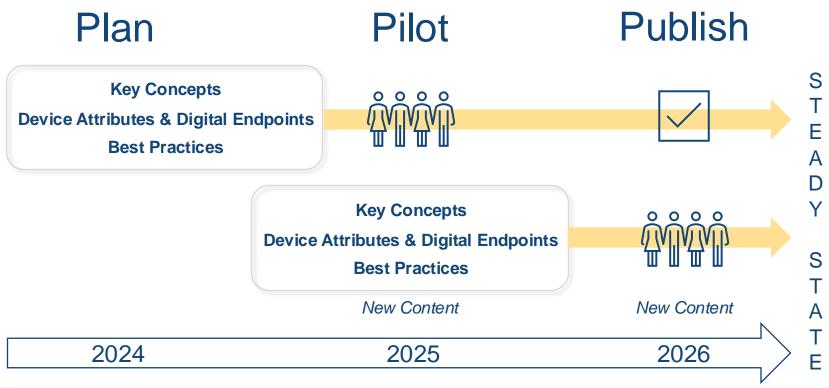
Draft Example 1: Continuous Glucose Monitoring

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM % Time 70-180 mg/dl," in a clinical trial. The device data needed for the trial is specified in the study protocol.

	di.xpt							
\square	Row	STUDYID	DOMAIN	SPDEVID	DISEQ	DIPARMCD	DIPARM	DIVAL
Person Mobile phone "ANDROID G7"	1	ABC	DI	ANDROID G7	1	DEVTYPE	Device Type	Mobile phone
	2	ABC	DI	ANDROID G7	1	MANUF	Manufacturer	Samsung
3732xxxxxxx" is installed on	3	ABC	DI	ANDROID G7	1	VERSION	Version Identifier	7
is attached to consists of	4	ABC	DI	Dexcom G7 Mobile App	1	DEVTYPE	Device Type	Mobile phone app
	5	ABC	DI	Dexcom G7 Mobile App	1	MANUF	Manufacturer	Dexcom
Wearable Device CGM app "DEXCOM G7 3732xxxxxxx" "Dexcom G7 Mobile App"	6	ABC	DI	Dexcom G7 Mobile App	1	VERSION	Version Identifier	7
	7	ABC	DI	DEXCOM G7 3732xxxxxxx	1	DEVTYPE	Device Type	Sensor/Transmitter
includes	8 ABC D	DI	DEXCOM G7 3732xxxxxxxx	1	1 MANUF	Manufacturer	Dexcom	
includes	9	ABC	DI	DEXCOM G7 3732xxxxxxx	1	SERIAL	Serial Number	3732xxxxxxxx
transmits	10	ABC	DI	DEXCOM G7 CGM 3732xxxxxxx	1	DEVTYPE	Device Type	CGM
sensor transmitter glucose data to algorithm(s)	11	ABC	DI	DEXCOM G7 CGM 3732xxxxxxx	1	MANUF	Manufacturer	Dexcom

Digital Endpoints

Draft Example 1: Continuous Glucose Monitoring

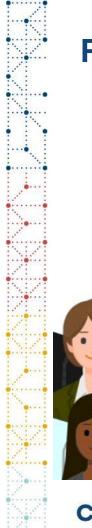

This example shows findings from assessments of estimates of blood glucose from a continuous glucose monitor (CGM) with the purpose of supporting DiMe Endpoint 125, "CGM % Time 70-180 mg/dl," in a clinical trial. The device data needed for the trial is specified in the study protocol.

	b.xpt							•						
	Row	STUDYID	USUBJID	SPDEVID	LBSEQ	LBREFID	LBTESTCD	LBTEST	LBORRES	LBORRESU	LBSPEC	LBMETHOD	LBANMETH	LBDTC
[DEXCOM G7		3732xxxxxx- 1684 EGV		Estimated			INTERSTITIAL			2023-06-
	1	ABC	ABC-001	CGM	1		Glucose	82	mg/dL	FLUID	BIOSENSOR	ALGORITHM	15T08:00:56	
				3732xxxxxxxx				Value			FLUID			13108.00.30
	2	ABC		DEXCOM G7	2	3732xxxxxx- 1984 EGV		Estimated		mg/dL	INTERSTITIAL FLUID BIOSENSOR		ALGORITHM	2023-06-
			ABC-001	CGM			EGV	GV Glucose	89			BIOSENSOR		15T08:05:56
				3732xxxxxxxx				Value						10100.00.00
				DEXCOM G7		2722		Estimated		mg/dL	INTERSTITIAL FLUID BIOSENSOR			2023-06-
	3	ABC	ABC-001	CGM	3	3732xxxxxxx- 1684	EGV	Glucose	94			ALGORITHM	15T08:10:57	
				3732xxxxxxxx		1004		Value			FLUID			15108:10:57

Framework

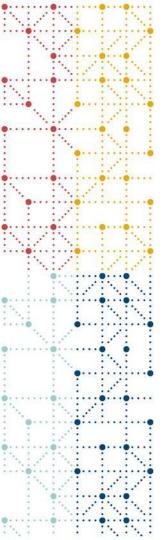
A Path to Community Benefit

Resource development helps to address current community needs and supports adoption of DHTs.



Piloting supports real-time content release and is comparable to an extended Public Review where content is used with real-time feedback

A steady-state framework empowers the community to develop content in real-time per innovation and evolving needs.



Please join us!

Become a volunteer <u>www.cdisc.org/volunteer</u> <u>https://dimesociety.org/get-involved/</u>

Thank You!

